Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle
نویسنده
چکیده
We prove that higher Sobolev norms of solutions of quasi-linear Klein-Gordon equations with small Cauchy data on S remain small over intervals of time longer than the ones given by local existence theory. This result extends previous ones obtained by several authors in the semi-linear case. The main new difficulty one has to cope with is the loss of one derivative coming from the quasi-linear character of the problem. The main tool used to overcome it is a global paradifferential calculus adapted to the Sturm-Liouville operator with periodic boundary conditions.
منابع مشابه
Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملSoliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملLong-time existence for semi-linear Klein-Gordon equations with quadratic potential
We prove that small smooth solutions of semi-linear Klein-Gordon equations with quadratic potential exist over a longer interval than the one given by local existence theory, for almost every value of mass. We use normal form for the Sobolev energy. The difficulty in comparison with some similar results on the sphere comes from the fact that two successive eigenvalues λ, λ′ of √ −∆+ |x|2 may be...
متن کاملAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008